Protein microarrays on hybrid polymeric thin films prepared by self-assembly of polyelectrolytes for multiple-protein immunoassays.
نویسندگان
چکیده
We report here the development and characterization of protein microarrays fabricated on nanoengineered 3-D polyelectrolyte thin films (PET) deposited on glass slide by consecutive adsorption of polyelectrolytes via self-assembly technique. Antibodies or antigens were immobilized in the PET-coated glass slides by electrostatic adsorption and entrapment of porous structure of the 3-D polymer film and thus establishing a platform for parallel analysis. Both antigen and antibody microarrays were fabricated on the PET-coated slides, and direct and indirect immunoassays on protein microarrays for multiple-analyte detection were demonstrated. Microarrays produced on these PET-coated slides have consistent spot morphology and provide performance features needed for proteomic analysis. The protein microarrays on the PET films provide LOD as low as 6 pg/mL and dynamic ranges up to three orders of magnitude, which are wider than the protein microarrays fabricated on aldehyde and poly-L-lysine functionalized slides. The PET films constructed by self-assembly technique in aqueous solution is green chemistry based, cost-effective method to generate 3-D thin film coatings on glass surface, and the coated slide is well suited for immobilizing many types of biological molecules so that a wide variety of microarray formats can be developed on this type of slide.
منابع مشابه
Fabrication of DNA microarrays on nanoengineered polymeric ultrathin film prepared by self-assembly of polyelectrolyte multilayers.
Microarray-based technology is in need of flexible and cost-effective chemistry for fabrication of oligonucleotide microarrays. We have developed a novel method for the fabrication of oligonucleotide microarrays with unmodified oligonucleotide probes on nanoengineered three-dimensional thin films that are deposited on glass slides by consecutive layer-to-layer adsorption of polyelectrolytes. Un...
متن کاملManipulation of molecular transport into mesoporous silica thin films by the infiltration of polyelectrolytes.
The design of hybrid mesoporous materials incorporating polymeric assemblies as versatile functional units has become a very fertile research area offering major opportunities for controlling molecular transport through interfaces. However, the creation of such functional materials depends critically on our ability to assemble polymeric units in a predictable manner within mesopores with dimens...
متن کاملMultilayer Nano Films for Corrosion Control
Nano films consisting of an alternating sequence of positively and negatively charged polyelectrolytes have been prepared by means of the electrostatic layer-by-layer (LBL) sequential assembly technique on treated and untreated mild steel wires. Inhibitor was encapsulated between cationic and anionic polyelectrolyte nano films. This paper mainly focuses on the effect of these nano-films of poly...
متن کاملImprovement Physical Properties of Pullulan-Whey Protein Biocomposite Films with Nanoclay
In the current study, whey protein- pullulan- clay nanocomposite films are prepared by casting method. The effect of nanoclay at three concentrations (1%, 3% and 5%) on physical properties such as moisture content, solubility in water, water vapor permeability and transparency of whey protein- pullulan composite films investigated. The results show that the effect of nanoparticles on composite ...
متن کاملImprovement Physical Properties of Pullulan-Whey Protein Biocomposite Films with Nanoclay
In the current study, whey protein- pullulan- clay nanocomposite films are prepared by casting method. The effect of nanoclay at three concentrations (1%, 3% and 5%) on physical properties such as moisture content, solubility in water, water vapor permeability and transparency of whey protein- pullulan composite films investigated. The results show that the effect of nanoparticles on composite ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proteomics
دوره 6 5 شماره
صفحات -
تاریخ انتشار 2006